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Introduction

» Key machine learning algorithms, such as linear regression (LR), convolutional neural networks (CNNs), etc., are
widely used in the computing industry.

= For example, CNN 1s known for their high accuracy, which is applied in face recognition, object detection, image
segmentation, voice recognition, and emotion analysis [1].

= Another example is LR, which is utilized for forecasting temperature, data estimation and prediction in smart
systems. Similarly, other ML algorithms play vital roles in modern applications, including autonomous driving,
smart home energy management, etc. [1], [6], [9].

» ML algorithms are essentially probabilistic models that perform extensive computations on input data for tasks like
classification/prediction.

= For instance, a CNN consists of layers such as convolutional, pooling, flattening, and fully connected layers, with
the convolutional layer being highly computation intensive.

= This necessitates the use of dedicated coprocessors/ accelerators for data-centric applications.
= Similarly, the LR algorithm handles large datasets during training, requiring substantial computational resources.

» Dedicated computing platforms, such as coprocessors/ hardware accelerators, field-programmable gate arrays (FPGAs),
and application- specified integrated circuits (ASICs), efficiently manage these computational demands. Dedicated
accelerators can be designed to meet specific power and performance constraints.

» These ML accelerators can be designed by using the high-level synthesis (HLS) framework [3]. HLS accepts the
behavioral description of the ML algorithms and produces its corresponding register transfer-level (RTL) data path.

[1] C. Jiang, D. Ojika, B. Patel and H. Lam, "Optimized FPGA-based Deep Learning Accelerator for Sparse CNN using High Bandwidth Memory," IEEE 29th Annual International Symposium on Field-
Programmable Custom Computing Machines, USA, 2021, pp. 157-164.

[3]Why you Need HLS for Machine Learning Accelerators, accessed in 2024, Available: https://resources.sw.siemens.com/en-US/video-why-you-need-hls-for-machine-learning-accelerators.

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, /ET Journal of Engineering, €12299 (2023).

[8] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," International Conference on Engineering and Technology, Turkey, 2017, pp. 1-6.

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," I[EEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306, 2022.



ML/Hardware Accelerators

» ML/hardware accelerators enhance data-intensive tasks like image recognition, natural language processing, and
autonomous driving, enabling faster data processing and improved efficiency in real-life applications.

= Some real-life examples of ML accelerators are NVIDIA Deep Learning Accelerator (NVDLA) [4], LR hardware
accelerator [6], convolutional layer hardware accelerator [9], etc.
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Fig. 1. (a) Different design representations for machine learning (ML) accelerators, and (b) Different applications of ML accelerators

[4] N. Gupta, A. Jati and A. Chattopadhyay, Al Attacks Al: Recovering Neural Network architecture from NVDLA using Al-assisted Side Channel Attack, Cryptology {ePrint} Archive, Paper 2023/368, 2023,
url = https://eprint.iacr.org/2023/368.

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, IET Journal of Engineering, €12299 (2023).

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306,
2022.



Security Vulnerability in ML/Hardware Accelerators

» How do hackers (attackers) exploit security vulnerability in ML/Hardware accelerators?

= ML accelerators or in general hardware accelerators may be designed using HLS framework/RTL designing [3],
[6], [9]. In various steps of HLS/RTL design, attackers (within the design house) can compromise and exploit a
computer-aided design (CAD) software tool and/or RTL design to covertly inject backdoor Trojans.

= As shown in Fig. 1. (c), a hardware Trojan attack on a crypto-accelerator has capability to bypass the encryption
circuit and leak confidential information. On rare even triggering, the encryption is bypassed easily.

= Moreover, security vulnerability of NVIDIA accelerators (NVDLA) has been exposed in [4], as shown in Fig. 1.
(d). Power and side channel leakage information from CNN models have been used to train CNN based attack

models.
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Fig. 1. (c¢) Example of Trojan attack and security vulnerability in a cryptographic accelerator, and (d) Example
of Trojan attack and security vulnerability of a real-world application (NVDLA accelerator)

[3]Why you Need HLS for Machine Learning Accelerators, accessed in 2024, Available: https://resources.sw.siemens.com/en-US/video-why-you-need-hls-for-machine-learning-accelerators.
[4] N. Gupta, A. Jati and A. Chattopadhyay, Al Attacks Al: Recovering Neural Network architecture from NVDLA using Al-assisted Side Channel Attack, Cryptology {ePrint} Archive, Paper 2023/368, 2023, url =

https://eprint.iacr.org/2023/368.

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, /ET Journal of Engineering, €12299 (2023).
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Security Vulnerability in ML/Hardware Accelerators

» How do hackers (attackers) exploit security vulnerability in ML/Hardware accelerators?

= In another real-life scenario, an attacker can accelerate the aging process of a computing device, such as digital
signal processing (DSP) accelerator, by exploiting negative bias temperature instability (NBTI) stress as hardware
Trojan.

= By applying NBTI stress based Trojan attack, an attacker puts stress on PMOS transistors by increasing their
threshold voltage. This causes them to degrade in terms of performance delay and can expedite the aging related
performance degradation. This has been established in [5].

= Furthermore, an attacker can inject a trojan during scheduling phase, allocation phase and max interconnect design
phase. For example, a hacker can also secretly insert Trojan (pseudo/fake) operations during the scheduling phase
of the HLS design process (resulting in a battery exhaustion attack) [17].

= Further, a hacker can also exploit the Mux-based interconnect design stage during HLS to secretly insert Trojans
(such as denial-of-service hardware Trojan (DoS HT), performance degradation hardware Trojan (PD-HT), data
damage hardware Trojan (DD-HT)) into the ML accelerators (adopted from [7]).

The goal of the attacker while launching such Trojan attacks is to maliciously exploit any unused free port or under-
utilized resources to inject Trojan logic.

[5] D. Kachave and A. Sengupta, "Digital Processing Core Performance Degradation Due to Hardware Stress Attacks," IEEE Potentials, vol. 38, no. 2, pp. 39-45, March-April 2019.
[7]1 A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs,” IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[17] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-926, 2019.



Security Vulnerability in ML/Hardware Accelerators
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Fig. 2. (a) Overview of Trojan attack during ML
accelerator design process, (b) Established Trojan
attacks on ML accelerator, and (c) Design flow of

ML (CNN) co-processor/accelerator (adopted
from [9]).

Note: ‘Iyy’and ‘Hpyy’ in the transfer function
represents the input image of size MxN and
kernal of size mxn respectively. Oy denotes the
output value of each element/pixel corresponding
to output feature map; further in the expanded
transfer function, each pixel value of the input
image matrix and each kernel value of kernel
matrix t’ is represented by g, and hf,q
respectively

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," /IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306, 2022.



Security Vulnerability in ML/Hardware Accelerators

» As shown in Fig. 2.(c), initially, the high-level code/transfer function of the ML application is taken as input. For
example, the CNN convolution layer’s transfer function is shown in Fig. 2.(c).

» Further, the expanded transfer function is generated. Next, the corresponding data flow graph (DFG/CDFQG) is
generated [9]. Subsequently, the DFG is fed as input to the HLS scheduling and allocation block. Finally, ML
accelerator RTL datapath is generated post datapath synthesis.

» Fig. 2.(c) also depicts the datapath portion view of the CNN convolutional layer accelerator [9]. As evident in the
datapath portion view, some input ports are free (unutilized) in the Mux-based interconnect design of the shown
datapath (ports shown in orange).

» It has been established in the literature [7], that these unused free ports can be exploited by the attacker during
compromising a CAD HLS tool (to secretly insert the Trojan), without the knowledge of the ML accelerator designer
(who 1s using the tool), causing different payloads (such as denial-of-service hardware Trojan (DoS HT), performance
degradation hardware Trojan (PD-HT), data damage hardware Trojan (DD-HT)).

» Additionally, it has also been established in the literature [17], that an attacker can also exploit the scheduling phase of
the HLS framework to insert pseudo/fake operations to launch a battery exhaustion attack.

» The various Trojan payloads [2] can cause different types of adversarial effects in ML accelerators.

[2] Xue, M., Gu, C., Liu, W., Yu, S. and O'Neill, M. (2020), Ten years of hardware Trojans: a survey from the attacker's perspective. IET Comput. Digit. Tech., 14: 231-246.

[7]1 A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs,” IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306,
2022.

[17] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-926, 2019.



Types of Trojan Attacks

» The four established Trojan attacks on ML
accelerators are as follows:

e Performance hardware

Trojan (PD-HT),
* Data damage hardware Trojan (DD-HT),

* Denial-of-service hardware Trojan (DoS-
HT), and

 Battery exhaustion Trojan (BE-HT).

degradation

Note: Here, the orange-colored components
indicate Trojan logic inserted by the attacker and
orange free port input on top of 8xI multiplexer
indicates unutilized port exploited by the hacker
for secret Trojan insertion.
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Types of Trojan Attacks (Contd.)

» Fig. 3.(e) demonstrates the integration of a BE-HT in the ML accelerator, designed to increase power consumption
and speed up battery depletion.

e The primary goal is to reuse the idle functional units (FUs) in the ML accelerator datapath. Multipliers, which
have larger power dissipation, are chosen to increase the overall power consumption of the accelerator. Such

modifications in the datapath have nominal area and power overhead.

e This technique does not affect the final computational output while concurrently not enhancing the power
overhead of the design substantially.
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Triggering of Backdoor Trojan

» Hardware Trojans are stealthily inserted into systems that become active only when a specific rare condition
(predetermined by the attacker) 1s met.

» This activation has been managed through comparator logic that switches on the Trojan’s payload when the rare
condition is satisfied.

» These Trojans are extremely difficult to detect because they stay inactive (dormant and undetected until triggered
by specific conditions) during regular system operations. During the insertion of the Trojan, an attacker programs a
constant value ‘k’ into memory (electrically programmable) [7].

» As shown in Figures 3. (b), (c), and (d), the first input (t) of the comparator is connected internally to the functional
units (such as adders, multipliers, etc.) of remaining ML accelerator datapath, and the second input is connected to
memory holding pre-loaded constant ‘k’. Once the system’s state (t) matches this constant (k), the Trojan becomes
triggered, causing it to execute its intended malicious effects.

» The above-explained trigger condition is the same for PD-HT, DD-HT, and DoS-HT. However, BE-HT has been
designed in the literature to become triggered after a certain count value of the counter [17].

» These Trojans not only compromise the security of ML designs but also erode the trust between the ML accelerator
vendors and CAD software communities [5].

[5] D. Kachave and A. Sengupta, "Digital Processing Core Performance Degradation Due to Hardware Stress Attacks," IEEE Potentials, vol. 38, no. 2, pp. 39-45, March-April 2019.
[7]1 A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs,” IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[17] C. Pilato, K. Basu, F. Regazzoni and R. Karri, "Black-Hat High-Level Synthesis: Myth or Reality?," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27, no. 4, pp. 913-926, 2019.
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Time Bomb Trojan Attack

» Fig. 4(a) shows the insertion stage of the proposed time-bomb triggered Trojan during the HLS design process.

» For explanation and demonstration of the proposed HLS Trojan, we use an HLS generated convolution filter IP
design (Fig. 4(b)).
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Anirban Sengupta, Nabendu Bhui "Time-Bomb HLS Trojan for Performance Degradation Payload", IEEE Design & Test (D&T), Volume: 42, Issue: 5, pp. 83 - 92, October 2025



Time Bomb Trojan Attack

» Overview of the Proposed Trojan Insertion

The work presents novel time-bomb triggering driven performance degradation hardware Trojan (PD-HT) that
an attacker can secretly implant by exploiting a free (vacant) input port in the mux-based interconnect design
of HLS process.

During the mux-based interconnect design of HLS, appropriate number and type of multiplexer (mux) units are
determined and generated.

In almost all IP datapath designs, the generated muxes have at least a single free (vacant) port, which can be
easily exploited by an attacker to covertly inject Trojan.

The proposed PD-HT refers to a malicious alteration within the IP design that achieves performance
degradation payload under a specific rare-event time-duration based triggering condition.

The proposed HLS Trojan exploits a time-bomb based trigger which indicates that the Trojan logic only gets
activated (by an attacker) when a pre-defined time interval has elapsed.

The proposed time-bomb Trojan trigger is designed in such a way that the activation only occurs when the
modulus up-counter reaches the same state value as pre-defined in the in-built memory (or register).

Since the proposed HLS Trojan is only activated under a specific rare-event and it only affects the
performance, hence it is very challenging to identify this Trojan.

Fig. 4(a) shows the insertion stage of the proposed time-bomb triggered Trojan during the HLS design process.

Anirban Sengupta, Nabendu Bhui "Time-Bomb HLS Trojan for Performance Degradation Payload", IEEE Design & Test (D&T), Volume: 42, Issue: 5, pp. 83 - 92, October 2025
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Time Bomb Trojan Attack
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Detection Techniques Employed for Backdoor
Trojans in ML Accelerators

S. Different detection techniques Performance degradation  Data damage  Denial-of-service Battery (Power)
No. Trojan attack Trojan attack Trojan attack exhaustion Trojan attack
1 C to RTL Equivalence checking X v X v
[10]
2 TL-HLS (DMR based security- X X X X
aware scheduling) [11]
3 Side channel analysis [12] X X X X
4 Detection using reverse X X X X
engineering [13]
5 Detection using path delay X X x x
fingerprint [14]
6 GNN based detection [15] X X X X
7 HLT based detection [16] X X X v

(a)

Fig. 5. (a) Analysis of different detection techniques on Trojan infected ML accelerator designs (Note: ‘x’ indicates “not detectable”)

[10] M. Abderechman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST: Belling the Black-Hat High-Level Synthesis Tool," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no.
11, pp. 3661-3672, 2022.

[11] A. Sengupta, S. Bhadauria and S. P. Mohanty, "TL-HLS: Methodology for Low Cost Hardware Trojan Security Aware Scheduling With Optimal Loop Unrolling Factor During High Level Synthesis," /IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 36, no. 4, pp. 655-668, 2017.

[12] Y. Huang, S. Bhunia and P. Mishra, "Scalable Test Generation for Trojan Detection Using Side Channel Analysis," IEEE Transactions on Information Forensics and Security, vol. 13, no. 11, pp. 2746-2760, 2018.
[13] M. Ludwig, A. -C. Bette and B. Lippmann, "ViTaL: Verifying Trojan-Free Physical Layouts through Hardware Reverse Engineering," IEEE Physical Assurance and Inspection of Electronics, USA, 2021, pp. 1-8.
[14] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” IEEE International Workshop on HOST, 2008, pp. 51-57.

[15] R. Yasaei, L. Chen, S. -Y. Yu and M. A. A. Faruque, "Hardware Trojan Detection using Graph Neural Networks," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2022.

[16] M. Rathor and A. Sengupta, "Revisiting Black-Hat HLS: A Lightweight Countermeasure to HLS-Aided Trojan Attack," IEEE Embedded Systems Letters, Volume: 16, Issue: 2, 2024, pp. 170-173.
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Detection Techniques Employed for Backdoor
Trojans in ML Accelerators (Contd.)

» Diftferent types of Trojans, like PD-HT and DoS-HT, impacting performance and operational state, without altering
functionality, makes them difficult to detect using equivalence checking [7], [10].

» On the other hand, DD-HT affects data output under rare condition triggering, making detection somehow possible
through equivalence analysis [10].

» Further, BE-HT has been successfully detected using C to RTL equivalence checking based on finite state machine
datapath (FSMD) extraction. Further, these Trojans remain undetected through side-channel analysis [12] as they
don’t leak significant parametric information (such as delay and power).

» Techniques like path delay fingerprinting [14], attempt to differentiate normal designs from those compromised by
Trojans, however, they become impractical for complex HLS-generated ML accelerator.

» Detection tools relying on Graph Neural Networks (GNN) [15] face limitations in accurately detecting Trojans
within ML accelerators, because its performance/accuracy for complex ML accelerators 1s lower due to weaker
learning behavior.

» Moreover, the detection technique [16] is only capable of handling BE-HT attacks, as PD-HT, DD-HT, and DoS-
HT do not induce Trojan payload using fake operation insertion.

» Therefore, based on the published detection techniques for Trojans, C to RTL functional equivalence checking [10]
has been the most effective technique as it is capable of detecting both BE-HT and DD-HT.

[10] M. Abderehman, R. Gupta, R. R. Theegala and C. Karfa, "BLAST: Belling the Black-Hat High-Level Synthesis Tool," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 41, no. 11, pp. 3661-3672, 2022.
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Analysis in terms of Design Area, Latency, and
Resources
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Analysis of ML Accelerators in terms of Design
Area, Latency, and Resources (Contd.)

» This section presents the analysis of different ML accelerator designs from the literature. Figures 4.(b) and (c)
depict the design area and latency for the LR-ML accelerator corresponding to different numbers of datasets (N),
respectively [6].

» The design area and latency are directly proportional to the number of datasets it handles. Subsequently, figures 4.
(d) and (e) show the design area (in terms of gate count) and power overhead corresponding to convolutional layer
CNN accelerator after Trojan injection, respectively [7].

» The Trojan-infected design, on average, incurs a minimal increase in the ~196 gate count value and ~1.6 pw power
as compared to the baseline ML-accelerator design [7].

» Next, Fig. 4. (f) shows the comparison of pixel computation between [8] and [9] for different convolutional kernel
filters (K).

» Approach [9] surpasses [8] in terms of pixel computation value due to parallel pixel computation process owing to
loop unrolled architecture. Finally, Fig. 4 (g) highlights required resources for convolutional layer accelerator
datapath w.r.t. three different kernels [9].

[6] A. Sengupta, R. Chaurasia, M. Rathor: HLS-based swarm intelligence driven optimized hardware IP core for linear regression-based machine learning, /ET Journal of Engineering, €12299 (2023).

[7] A. Sengupta, A. Anshul, V. Chourasia and N. Kumar, "M-HLS: Malevolent High-Level Synthesis for Watermarked Hardware IPs," IEEE Embedded Systems Letters, 2024, doi: 10.1109/LES.2024.3416422.
[8] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural network," International Conference on Engineering and Technology, Turkey, 2017, pp. 1-6.

[9] A. Sengupta and R. Chaurasia, "Secured Convolutional Layer IP Core in Convolutional Neural Network Using Facial Biometric," IEEE Transactions on Consumer Electronics, vol.68, no. 3, pp. 291-306,
2022.
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